Semi-nonparametric Iv Estimation of Shape-invariant Engel

نویسندگان

  • Richard Blundell
  • Xiaohong Chen
  • Dennis Kristensen
چکیده

This paper studies a shape-invariant Engel curve system with endogenous total expenditure, in which the shape-invariant speci…cation involves a common shift parameter for each demographic group in a pooled system of nonparametric Engel curves. We focus on the identi…cation and estimation of both the nonparametric shapes of the Engel curves and the parametric speci…cation of the demographic scaling parameters. The identi…cation condition relates to the bounded completeness, and the estimation procedure applies the sieve minimum distance estimation of conditional moment restrictions allowing for endogeneity. We establish a new root mean squared convergence rate for the nonparametric IV regression when the endogenous regressor could have unbounded support. Root-n asymptotic normality and semiparametric e¢ ciency of the parametric components are also given under a set of ‘low-level’su¢ cient conditions. Our empirical application using the UK Family Expenditure Survey shows the importance of adjusting for endogeneity in terms of both the nonparametric curvatures and demographic parameters of systems of Engel curves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-nonparametric IV estimation of shape-invariant Engel curves

This paper concerns the identification and estimation of a shape-invariant Engel curve system with endogenous total expenditure. The shape-invariant specification involves a common shift parameter for each demographic group in a pooled system of Engel curves. Our focus is on the identification and estimation of both the nonparametric shape of the Engel curve and the parametric specification of ...

متن کامل

Semi-nonparametric Iv Estimation of Shape-invariant Engel Curves By

1 This paper studies a shape-invariant Engel curve system with endogenous total expenditure , in which the shape-invariant specification involves a common shift parameter for each demographic group in a pooled system of nonparametric Engel curves. We focus on the identification and estimation of both the nonparametric shapes of the En-gel curves and the parametric specification of the demograph...

متن کامل

Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals

For semi/nonparametric conditional moment models containing unknown parametric components (θ) and unknown functions of endogenous variables (h), Newey and Powell (2003) and Ai and Chen (2003) propose sieve minimum distance (SMD) estimation of (θ, h) and derive the large sample properties. This paper greatly extends their results by establishing the followings: (1) The penalized SMD (PSMD) estim...

متن کامل

Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals By

This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (θ ) and unknown functions (h) of endogenous variables. We show that: (1) the penalized sieve minimum distance (PSMD) estimator (θ̂ , ĥ) can simultaneously achieve root-n asymptotic normality of θ̂ and nonparametric optimal convergence rate of ĥ,...

متن کامل

Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Generalized Residuals

This paper studies nonparametric estimation of conditional moment models in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators which are minimizers of a penalized empirical minimum distance criter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007